Extensions 1→N→G→Q→1 with N=C22×S3 and Q=C8

Direct product G=N×Q with N=C22×S3 and Q=C8
dρLabelID
S3×C22×C896S3xC2^2xC8192,1295

Semidirect products G=N:Q with N=C22×S3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C22×S3)⋊C8 = (C22×S3)⋊C8φ: C8/C2C4 ⊆ Out C22×S348(C2^2xS3):C8192,27
(C22×S3)⋊2C8 = S3×C22⋊C8φ: C8/C4C2 ⊆ Out C22×S348(C2^2xS3):2C8192,283
(C22×S3)⋊3C8 = C2×D6⋊C8φ: C8/C4C2 ⊆ Out C22×S396(C2^2xS3):3C8192,667

Non-split extensions G=N.Q with N=C22×S3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C22×S3).C8 = C8.25D12φ: C8/C2C4 ⊆ Out C22×S3484(C2^2xS3).C8192,73
(C22×S3).2C8 = D6⋊C16φ: C8/C4C2 ⊆ Out C22×S396(C2^2xS3).2C8192,66
(C22×S3).3C8 = C2×D6.C8φ: C8/C4C2 ⊆ Out C22×S396(C2^2xS3).3C8192,459
(C22×S3).4C8 = S3×M5(2)φ: C8/C4C2 ⊆ Out C22×S3484(C2^2xS3).4C8192,465
(C22×S3).5C8 = S3×C2×C16φ: trivial image96(C2^2xS3).5C8192,458

׿
×
𝔽